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SUMMARY 
A uniform force is applied over an arbitrarily orientated bounded plane area in the interior of a semi-infinite 
incompressible viscous fluid overlain by a dissimilar fluid. Based upon the Papkovitch-Neuber approach to 
the displacement equations of equilibrium in the theory of elasticity, it is shown that for any orientation of 
the force and loaded area, the velocities and stresses in the two phases can be found very simply by applying 
the same set of differential operators on the corresponding flow fields for a single homogeneous fluid occu- 
pying the whole space. A specialization of this theorem admits interpretations in terms of plate bending and 
extension. 

1. Introduction 

Solutions of  problems involving application of internal concentrated forces are of  funda- 

mental interest in continuum mechanics. Apart  f rom being Green's functions, they can be 
used, as demonstrated in the great papers of  Eshelby [1-4], in the construction of  solutions 
of  more complicated and physically more realizable problems. The problems of dislocation, 
disclination, phase transformations and internal motions in sediment laden streams are 
cases in point. 

The fundamental solution for a point force in an incompressible homogeneous infinite 

viscous fluid is available in the text-book of Lamb [5], while the case of  a semi-infinite 
fluid satisfying the usual no-slip boundary condition has been thoroughly treated by Blake 

[6] who used integral transform techniques. Reference may also be made to two additional 
interesting papers by Blake and Chwang [7] and Blake [8] on semi-infinite viscous 

fluids. 
The purpose of this paper is to consider the problem of a uniform force applied over a 

finite plane area of  arbitrary orientation in the interior of  one of two mutually immiscible 
semi-infinite incompressible viscous fluids. Such a two-layered system represents the simplest 
case of  a stratified flow that can be used in studying the interaction of singularities with 
fluid-fluid interfaces. Our method of solution is that of  taking advantage of the analogy 
between hydrodynamics and elastostatics. By making use of  Papkovitch-Neuber  potentials 
[9], suitably constructed to account for the orientation of the loaded area, we avoid the 
integrations of  Blake [6] and obtain expressions in terms of elementary functions. 

More importantly, a simple theorem is offered which shows that if  we know the flow 
fields when a region in the hydrodynamic whole space is subjected to any force distribution, 
the corresponding results for the two-fluid space can be obtained by differentiation of those 
for the whole space. Thus the two-fluid problem under the present investigation belongs to 
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the class of hydrodynamic problems discussed by Milne-Thomson [I0], Butler [11], and 
Weiss [12], as well as the elasticity problems discussed by the author [13-15]. 

It is believed that the theorem offered here is the first step towards the analysis of velocity 
distributions in contiguous fluid layers of infinite lateral extent. From the excellent papers 
of Hetenyi [16-17] on elastic quarter planes and spaces under surface loads, it is also believed 
that for given singularities in the interior of a quarter-space incompressible viscous fluid, 
the prescribed no-slip conditions at the intersecting planes can be satisfied by repeate d 
application of the theorem offered here. Mathematically, we first solve the hydrodynamic 
half-space problem by determining the Papkovitch potentials satisfying the conditions on 
the first plane. The resultant potentials will, however, violate the conditions to be satisfied 
on the second plane. To neutralize the velocities at this plane, we must superpose additional 
potentials with the aid of the theorem. This will, in turn, generate residual velocities on 
the first plane, which will have to be readjusted with the aid of the theorem to zero, thereby 
disturbing the no-slip condition on the second plane, and so on. Of course, the series solution 
obtained through such a process of repeated application must be tested for convergence. 

2. The basic equations 

When the inertia and body forces are negligible everywhere, the governing Navier-Stokes 
equations of steady motion for an incompressible viscous fluid are 

VP = #V2U, V. U = 0, (1) 

. = - P l  + ~ ( v u  + u v ) .  (2) 

Ill equations (1-2), U, a and P are the fluid velocity vector, stress tensor, and pressure, 
respectively, while I denotes the idemfactor. The constant/z designates the coefficient of 
viscosity, while the symbols V and V 2 are the gradient and Laplacian operators. 

As pointed out by the author in [18], a general solution of the vector equations (1), 
analogous to the Papkovitch-Neuber solution of the equations governing linearly elastic 
isotropic incompressible materials, admits the representation 

U = V(T0 + r. ~) - 2~, P = 2#V. ~ (3) 

provided that 

VZ~o = V2~ = 0 (4)  

and r denotes the three-dimensional position vector. Apart from compieteness [19] and the 
wealth of knowledge about harmonic functions, the representation (3) allows us to keep 
in close contact with linear elastostatics. It may be noted that a general solution of (1) can 
also be taken in terms of the Galerkin [9] vector function in the form 

U = V(V" X) - V2Z, P = #V2( V" X) (5) 

with 

vzv2x = 0. (6) 
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3. The  theorem 

Taking x, y, and z as the usual rectangular Cartesian coordinates,  our  main result may  be 
summarized as follows: 

Theorem. Let U and P be the velocity and pressure distributions for an arbitrary steady 

motion of  an incompressible homogeneous infinite viscous fluid such that U and P have all 
their singularities in the lower half-space z > 0 (region 1). Suppose now that the upper half- 

space z < 0 (region 2) is filled with a different incompressible viscous fluid, leaving the distri- 
bution of  singularities of  U and P unchanged. Then, provided that the conditions 

a(1) 'n  = a(2)'n, U (1) = U (2) (7) 

are satisfied when z = O, the new flow fields for the two phases are given by, for z > O, 

U(~)= U ~ - A U ~  + A z [ 2 ~ - - ~ U z  + zV2Uxl ,  

l U~ ~) U ~ -  AU~ + Az ~ U~ + zV2gy , 

(a) 

u~ ') = u~ - AU~ + Az  2--~- z g~ - zV2U, , 

0 
P(~) = P - AP + 2A -V2_ [2#(~)g~ + zP]; 

and for z < O, 

U (z) = (1 - A)U, p(2) = (1 + A)P, (9) 

where 

A = (/" - 1)/(/" + 1), /" -- #(2)/#(1), _ 1 < A < l, (10) 

while an overbar indicates an image quantity with respect to the plane z = O, that is, 

U = U(x, y, - z ) ,  etc. n denotes a unit vector along the z-axis, while the superscripts 1 and 2 
in round brackets refer respectively to the regions z > 0 and z < O. Conditions (7) ensure 

the continuity o f  flow along z = O, that is, continuous velocity and surface traction across 
the interface. 

Before proceeding to the proof,  let us remark  that  the special results for  the case of  a 
semi-infinite fluid bounded  by a rigid plane [6] can be obtained f rom the foregoing formulae 
by merely setting A = 1, while the case of  a homogeneous  infinite fluid is recoverable by  
setting A = 0. 

Proof. Let  (x', y ' ,  z ') and (x", y", z") be two other  systems of  rectangular Cartesian 
coordinates which are connected with the reference system (x, y, z) through the relations 

x '  = x c o s a + ( z - h )  s ina ,  y '  = y ,  z ' = - x s i n a + ( z - h )  cos~,  
(11) 

x" = x cos c~ - (z + h) sin ~, y" = y, z" = x sin c~ + (z + h) cos ~, 
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where ~ and h are constants. Thus the system (x', y', z') corresponds to a translation and 
rotation of axes, while the system (x", y", z") is its image with respect to the plane z = 0. 
Equations (8-10) will be established by showing that they are satisfied by the fundamental 
solution for a uniform force applied on the plane z' = 0 over a finite plane area S containing 

the arbitrary point x'  = 4, Y' = q. 
Consider first the case when the force, fx,, acts parallel to the x'-axis. Then, for the 

homogeneous infinite fluid, the velocity and pressure fields are given by [5, 9], after a 
straightforward coordinate transformation 

U = V(To + xkUx + zT~=) - 2(Ttx, 0, ~z), 

( P = 2#(1)fl cos ~ Ox + sin ~ I 1 

where 

f l  = -fx'/STz#(i)' I i =  ~ ds '  J l =  --~1 dS' (13) 

R i = [(x' - 0 2 + (y'  - ~/)z + z,2]~, 

while 

7% = - f  l(Ji + h sin aI1), (14) 

(T, ,  kg) = f l (cos  a, sin a)Ii. 

The double integrals 11 and J i  are the Newtonian potentials of surface distributions with 
densities p(r) = 1, p(r) = r. For  the calculation of the stress field, it is unnecessary to 
evaluate these integrals as they stand, since only their derivatives are required. However, 
the calculation of the velocity field requires an explicit knowledge of I 1. This presents no 
mathematical difficulty for some shapes of practical importance, for the double integrals 
can always be transformed into line integrals taken round the bounding curve of S by 
means of Stokes's integral theorem. Indeed, as shown by Sadowsky and Sternberg [20], 
among others [21], 11 admits a representation in terms of complete and incomplete elliptic 
integrals if the loaded area S is a circle. On the other hand, if S is the rectangle 

{(4, t / ) r - a < ~ < a ,  - b < q _ - < b } ,  

11 can be expressed in terms of logarithms and inverse tangents with the aid of an indefinite 

integral* of Kellogg [22]: 

R l l + b - Y '  R21 + b - Y '  
l l  = (a - x ' ) In  + (a + x ' ) In  

R12 - b - y' R22 -- b - y' 

R1, + a - x' R12 + a - x' 
+ (b - y') in + (b + y') In 

R2i  -- a - -  x'  R22 - a -  x'  

- z 'Itan-i ( (a - x')(b - Y'))  + tan-l ( (a - x')(b + Y') z'R12 

( (a + x')(b - Y')-) + tan-l ( (a + x')(b + Y') ) l  (15) 
+ t a n - i  z'Rzi z'R22 . 

* This indefinite integral contains an obvious misprint. 
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where 

R 2 =  ~i [x' + (--1)~a] 2 + [y' + (--1)/b] 2 + z '2, i , j  = 1, 2. (16) 

To evaluate the derivatives of J1 with the aid of Stokes' theorem, Js should be rewritten 

J1 = x'Is - - ~  RidS .  (17) 

The significance of the statement of our theorem is that once the necessary integrals for the 
homogeneous infinite fluid have been evaluated, the additional residual fields for the two- 
phase flow involve only the operation of differentiation, as will now be shown. 

Thus let the regions z > 0 and z < 0 be occupied by immiscible fluids, and construct the 
required Papkovitch-Neuber potentials as follows: 
For z > 0, 

!P(o l) = - f l ( J 1  + h sin aI1) -b f~Al(J  2 + h sin a/Z) , 

gt(1) = i s  cos a(I s + A212), kg(y l) = 0, 

7~(~ 1) = f ~  sin a(Is + AaI2) - 2fiAa -~z (J2 + h sin aI2) (18) 

-b 2 f l A 4 c o s a  x Oz - z  [2; 

and for z < 0, 

~/(0 2) = - f l A s ( J  1 + h sin aI0 ,  
(19) 

~ 2 )  = f lA5  cos aI l, ip(2) = O, ~2)  = f lA 5  sin als, - - y  

where 

fs 12 = ~ dS, J2 = dS, 
(20) 

R~ = [(x" - & + (y" - ~)2 + z .2]§ 

the variables x", y" and z" being given by equations (11). The constants Ai are to be deter- 
mined from the satisfaction of the six interface conditions (7) which yields the peculiarly 
simple expressions 

A s = A, A s = - A ,  A 3 = - A ,  A 4 = - A ,  A5 = 1 - A ,  (21) 

where A is given by (10). By formally substituting equations (18) to (21) into (3) and then 
comparing the resulting expressions with equations (12) we conclude that the velocity and 
pressure fields in the two phases are connected with the basic fields in the homogeneous 
infinite fluid according to equations (8) and (9). A general conclusion which can also be 
drawn is the following: 

Corollary. I f  7% and ~ denote the Papkoviteh potentials due to an arbitrary steady motion 
o f  an incompressible homogeneous infinite viseous fluM such that all these functions have their 
singularities in the region z > O, then on introducing a different viscous fluid into the region 
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z < 0 so that the conditions (7) are satisfied at the interface, the new Papkovitch potentials 

are given as follows" 

For z > O, 

= - a g o ,  - Ag , = % - Ag , 

~g~l) = 7t _ A g = _  2A O g o +  x Oz 

and for  Z < O, 

(~(o2), ~,(2)) = (1 - A)(~o, ~)  

where A is once again given by (10). 

0 g x +  y - - - z  gy ; 
- -  - z O x  Oz Oy 

(23) 

It is also of interest to state that the stresses in the two phases can be written down 
without going through a great deal of mathematical analysis once the flow fields for the 
homogeneous infinite fluid are specified. Thus 

0 z  W, 

Oz W, 

_ _  _ P ) ,  

(24) 

~(1) = f f x x  - -  A~xx + 2A z 
U x x  ~ X  2 

~ ( 1 )  - A~yy + 2A z Uyy = o'yy OY z 

 (0w 
_(1) = az = + Aft=: + 2Az Oz \ ~z 

0 z _ 

a(~ ) = a=x + Aff=x + 2Az W, 
OxOz 

6(x) 
=y = a=y + A6=y + 2Az Oyaz W, 

0 z _ 
a(~) - Af~y + 2Az W; 

~y = Cxy Ox~y 

a (2) = (1 + A)a, (25) 

where 

W = 2#(t)U= + zP. (26) 

As in the velocity formulae (8-9), equations (24-26) show that the calculation of the desired 
stress components consists only of the superposition of the direct and differentiated images. 
It can be shown, but not easily, that this contrasts to the case of bonded isotropic semi- 
infinite solids where integral terms are encountered. If  the motion of the homogeneous 
infinite fluid happens to be irrotational, as a consequence of the presence of sources or 
sinks, for example, equations (24-26) assume simple forms, since, in this special case, 
P = P = 0 .  

An application can noW be made to the case of a uniform force, fy,, applied parallel to 
the y',axis on the same area S in the interior of the fluid occupying z > 0. For  the homo- 
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geneous infinite fluid, the non-vanishing Papkovitch potentials are 

7% = - f 2 K 1 ,  7ty = f211 ,  f2 = -fy,/8rc# O), 

where 11 is given by (13), while 

tl dS  = y ' I  1 - 
K1  = R1 

Equations (22) and (23) therefore give the potentials for the two phases as follows: 

7t(o 1) = _ f 2 ( K 1  -- A K 2 )  ' ~(i) = O, ~(I) = f 2 ( i  I _ A I2 )  ' ~ X  ~ 

~(1) = 2 f z A  K z  - Y dz - z Oy 12 ; 

(27) 

(28) 

(29) 

~(o 2) = -f2(l - A)KI ' ~(z) = O, 

~(2) = f2(1 _ A)I1  ' ~r/(z2 ) = 0. 
Y 

where 

(3o) 

K 2  = ~ = y"I  2 - R 2 dS. (31) 

When a uniform force, fz', is applied on the same area, parallel to the z'-axis, we have the 
following results  

~(01) = - - f3  h COS ~(I1 -- AI2) ,  7t(xl) = - f 3  sin ct(I I -- AI2)  , ~(yl) = O, 

~(z 1) = f3 COS ~([1 -- AI2)  + 2 f3A h cos ~ c3z + sin ~ x Oz z ~3x I2'  (32) 

f3 = -L, /8rc~");  

7/(02) = - f a h ( 1  - A )  cos ~I1, T(~ ) = -f3(1 - A) sin cda, 

7'~ 2) = f3(1  - A)  cos  ~I1,  e<2) = 0, 
(33) 

where 11 and 12 are, as previously defined, the Newtonian potentials of surface distributions, 
their properties being well-known [20-21]. 

4. Concluding remarks 

A simple method for the calculation of singularity flow fields in two immiscible semi- 
infinite viscous fluids has been developed. Our main objective has been to lay the mathe- 
matical foundations for an efficient treatment of the problem of a transforming inclusion 
in a stratified half-space consisting of a fluid overlying another fluid, the top surface of the 
overlying fluid being either stress- or velocity-free. Explicit expressions based upon a 
repeated application of the theorem offered here will be supplied in a separate paper. The 
solution of the problem of a spherical liquid drop perturbing a general  Stokes' flow has 
already been submitted for publication elsewhere. 
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Let us finally remark that the theorem presented here remains in force for two-dimensional 
investigations dealing with immiscible fluids occupying the domains z > 0 and z < 0, 
where x and z now stand for two-dimensional rectangular Cartesian coordinates. We 
merely need to ignore Uy in equations (8-9), while kuy must also be set equal to zero in the 
formulae (22-23). An application can then be made to the fundamental case of a point 
force F = (F~, Fz) applied at the point x = 4, x = r/in the interior of the fluid occupying 
z > 0. For the homogeneous infinite fluid, the basic potentials required in (22-23) are 

(7~o, 7t,, ~ )  = eOTF~, - Fx, - Fz) log rl (34) 

where e is a parametric constant, while rl = [(x - 4) 2 + (z - ~/)2]~. For given sources 
and vortices, 7ix = 7tz = 0, while 7Jo is a scalar mukiple of log rl and 

arctan [(z - n) l(x - 4)], 

respectively. 
Furthermore, an interesting analogy exists in this two-dimensional case if we proceed to 

the limit A -+ 1, corresponding to a semi-infinite fluid z > 0 bounded by the rigid plane 
z = 0 and containing singularities in its interior. According to formulae (8), such a situation 
yields 

U(1)= U z - [ l - 2 z f f - - - z + z 2 V 2 1 U z .  (35) Z 

On the other hand, when an isotropic homogeneous semi-infinite plate z > 0 is rigidly 
clamped along z = 0 and is subjected to any concentrated transverse load in its interior, 
the induced flexural deflection 0) (1) is connected with the corresponding deflection ~o in 
the homogeneous infinite plate through 

~o ( 1 ) = e ~ -  1 - 2 z  ~ +z2V 2 N (36) 

But we can also show that the extensional Airy stress function ~(1) due to any body force 
distribution, dislocation or thermal dilations in the interior of a semi-infinite plate with 
a stress-free edge satisfies 

q5(1) = ~b-  [1 - 2z O--~- + z2V21 q~. (37) 

The analogy between equations (36-37) is complete. Although equations (36-37) are merely 
presented here, their derivation is simple, following the procedure contained in [15]. 
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